IBM-training-courses

Data science without a Ph.D. Using IBM SPSS Modeler (v18.1.1)

This course focuses on reviewing concepts of data science, where participants will learn the stages of a data science project. Topics include using automated tools to prepare data for analysis, build...

Read More
$845 USD GSA  $706.55
Course Code 0A018G
Duration 1 day
Available Formats Classroom
6119 Reviews star_rate star_rate star_rate star_rate star_half
This course is available in other formats
Self-Paced
Data Science without a Ph.D. Using IBM SPSS Modeler (v18.1.1) SPVC (0E018G-SPVC)
Course Image

This course focuses on reviewing concepts of data science, where participants will learn the stages of a data science project. Topics include using automated tools to prepare data for analysis, build models, evaluate models, and deploy models. To learn about these data science concepts and topics, participants will use IBM SPSS Modeler as a tool.

Skills Gained

  • Introduction to data science and IBM SPSS Modeler
  • Setting measurement levels
  • Exploring the data
  • Using automated data preparation
  • Partitioning the data
  • Selecting predictors
  • Using automated modeling
  • Evaluating models
  • Deploying models

Who Can Benefit

- Business Analysts - Data Scientists - Participants who want to get started with data science

Prerequisites

- It is recommended that you have an understanding of your business data

Course Details

Course Outline

1:  Introduction to data science and IBM SPSS Modeler    -   Explain the stages in a data-science project, using the CRISP-DM methodology    -   Create IBM SPSS Modeler streams    -   Build and apply a machine learning model2:  Setting measurement levels    -   Explain the concept of "field measurement level"    -   Explain the consequences of incorrect measurement levels    -   Modify a field's measurement level3:  Exploring the data    -   Audit the data    -   Check for invalid values    -   Take action for invalid values    -   Impute missing values    -   Replace outliers and extremes4:  Using automated data preparation    -   Automatically exclude low quality fields    -   Automatically replace missing values    -   Automatically replace outliers and extremes5:  Partitioning the data    -   Explain the rationale for partitioning the data    -   Partition the data into a training set and testing set6:  Selecting predictors    -   Automatically select important predictors (features) to predict a target    -   Explain the limitations of automatically selecting features7:  Using automated modeling    -   Find the best model for categorical targets    -   Find the best model for continuous targets    -   Explain what an ensemble model is8:  Evaluating models    -   Evaluate models for categorical targets    -   Evaluate models for continuous targets9:  Deploying models    -   List two ways to deploy models    -   Export scored data

Contact Us 1-800-803-3948
Contact Us
FAQ Get immediate answers to our most frequently asked qestions. View FAQs arrow_forward