SAS - Applied Clustering Techniques

Code: CLWS41
Length: 2 days
URL: View Online

The course looks at the theoretical and practical implications of a wide array of clustering techniques currently available in SAS. The techniques considered include cluster preprocessing, variable clustering, -means clustering, and hierarchical clustering.

Skills Gained
- prepare and explore data for a cluster analysis
- distinguish among many different clustering techniques, making informed choices about which to use
- evaluate the results of a cluster analysis
- determine the appropriate number of clusters to retain
- profile and describe clustered observations
- score observations into clusters.

Who Can Benefit
- Intermediate or senior level statisticians, data analysts, and data miners

Prerequisites
- Before attending this course, you should
 - be able to execute SAS programs and create SAS data sets. You can gain this experience by completing the SAS(R) Programming I: Essentials course.
 - have completed a graduate-level course in statistics or the Statistics I: Introduction to ANOVA, Regression, and Logistic Regression course.
 - have an understanding of matrix algebra.

Course Details

Introduction to Clustering
- identifying types of clustering
- measuring similarity
- classification performance

Preparation for Clustering
• preparing data for cluster analysis
• using variable clustering for variable selection
• using graphical clustering aids
• making elongated clusters more spherical
• viewing the impact of input standardization

Partitive Clustering
• -means clustering using PROC FASTCLUS
• outline the advantages of nonparametric clustering
• introducing PROC MODECLUS

Hierarchical Clustering
• comparing hierarchical clustering methods

Assessing Clustering Results
• determining the number of clusters in hierarchical and -means clustering
• profiling a cluster solution
• scoring new observations

Cluster Analysis Case Study
• variable selection
• graphical exploration of selected variables
• hierarchical clustering and determining the number of clusters
• profiling the seven-cluster solution
• modeling cluster membership
• scoring the customer database

Canonical Discriminant Analysis (CDA)Plots
• using canonical discriminant analysis to summarize multivariate data
• interpret CANDISC procedure output

Fuzzy Clustering
• performing fuzzy clustering using the (Q-technique) FACTOR procedure
• interpreting PROC FACTOR output

Assessing Multivariate Normality
• assessing multivariate normality

Schedule (as of November 15 2018)
<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Enroll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 18, 2018 - Dec 21, 2018</td>
<td>Virtual</td>
<td></td>
</tr>
</tbody>
</table>