Live Webinar - Cybersecurity Career Advancement & Protecting Organizations

closeClose

Watson Studio Methodology - eLearning

Course Details
Code: W7067G-WBT
Tuition (USD): $99.00 • Self Paced (6 hours)
Generate a quote

This IBM Web-Based Training (WBT) is Self-Paced and includes:
- Instructional content available online for duration of course
- Visuals without hands-on lab exercises

In this course, you will explore data preparation, data modeling, data visualization, and data cataloging using Watson Studio, Watson Knowledge Catalog, and Watson Machine Learning.

Skills Gained

Data science and AI 
- Describe the value of artificial intelligence 
- Explain the AI ladder approach and AI lifecycle 
- Identify the roles for working with data and AI 

Watson Studio 
- Summarize the benefits of Watson Studio 
- Outline the integration of Watson Studio and Watson Machine Learning 
- List and explain the tools available in Watson Studio 
- Sign up for a free IBM Watson account 

Watson Machine Learning 
- Describe machine learning methods and how they fit with AI 
- Create a Watson Studio project for learning models 

Watson Knowledge Catalog 
- Explain the features of Watson Knowledge Catalog 
- Identify the role of data policies to govern data assets 
- List and describe the data files used in this course 
- Create a catalog, add assets to a catalog, and add catalog assets to a project 

Data refinement 
- List the steps to successful data mining 
- Describe the typical customer churn business problem 
- Identify the steps in the data refinement process 
- Shape a data set using the Data Refinery according to specific observations 

Data modeling 
- Differentiate the Watson Studio tools to create models 
- Create a Watson Machine Learning model using AutoAI 
- Create a Machine Learning model using SPSS Modeler 
- Build a model using SparkML Modeler Flow 

Data science with notebooks 
- Experiment with Jupyter notebooks 
- Load from a file and run a Jupyter notebook with Watson Studio 

Model deployment 
- Identify the model repository 
- List model deployment and test options 
- Deploy a model 
- Test a deployed model 
 

Who Can Benefit

Data scientists, data engineer, business analyst

Prerequisites

None