When does class start/end?
Classes begin promptly at 9:00 am, and typically end at 5:00 pm.
Learn how to use the machine learning (ML) pipeline with Amazon SageMaker with hands-on exercises and four days of instruction. You will learn how to frame your business problems as ML problems and...
Read More“Thanks Chris for his outstanding teaching!”
Taking ML models from conceptualization to production is typically complex and time-consuming. You have to manage large amounts of data to train the model, choose the best algorithm for training it, manage the compute capacity while training it, and then deploy the model into a production environment. SageMaker reduces this complexity by making it much easier to build and deploy ML models. Hands-on learning is a key component of this course, so you’ll choose a project to work on, and then apply the knowledge and skills you learn to your chosen project in each phase of the pipeline. You’ll have a choice of projects: fraud detection, recommendation engines, or flight delays. Students will learn about each phase of the pipeline from instructor presentations and demonstrations. They will then apply that knowledge to complete a project solving one of three business problems: fraud detection, recommendation engines, or flight delays. By the end of the course, you will have successfully built, trained, evaluated, tuned, and deployed an ML model that solves selected business problems.
ExitCertified is an AWS Advanced Training Partner, the highest level of training partnership awarded by AWS. ExitCertified provides vendor-approved training and has the largest team of instructors delivering advanced AWS classes in North America, and the deepest bench of instructors delivering the entire authorized AWS catalog. AWS designates its highest status to only those few training partners that have consistently delivered the highest quality experience for learners. In 2021, students rated ExitCertified’s AWS training 4.69 out of 5.
Learn how to use the machine learning (ML) pipeline with Amazon SageMaker with hands-on exercises and four days of instruction. You will learn how to frame your business problems as ML problems and use Amazon SageMaker to train, evaluate, tune, and deploy ML models. Hands-on learning is a key component of this course, so you’ll choose a project to work on, and then apply the knowledge and skills you learn to your chosen project in each phase of the pipeline. You’ll have a choice of projects: fraud detection, recommendation engines, or flight delays.
Save up to $250-$2500 Use Promo Code: SurfBoard
View Details Register by September 6, 2019