CertNexus Logo wht bg
8155  Reviews star_rate star_rate star_rate star_rate star_half

Certified Data Science Practitioner (CDSP)

For a business to thrive in our data-driven world, it must treat data as one of its most important assets. Data is crucial for understanding where the business is and where it's headed. Not only can...

Read More
Course Code CNX0011
Duration 5 days
Available Formats Classroom

For a business to thrive in our data-driven world, it must treat data as one of its most important assets. Data is crucial for understanding where the business is and where it's headed. Not only can data reveal insights, it can also inform—by guiding decisions and influencing day-to-day operations. This calls for a robust workforce of professionals who can analyze, understand, manipulate, and present data within an effective and repeatable process framework. In other words, the business world needs data science practitioners. This course will enable you to bring value to the business by putting data science concepts into practice. This course includes hands on activities for each topic area.

Skills Gained

  • Use data science principles to address business issues.
  • Apply the extract, transform, and load (ETL) process to prepare datasets.
  • Use multiple techniques to analyze data and extract valuable insights.
  • Design a machine learning approach to address business issues.
  • Train, tune, and evaluate classification models.
  • Train, tune, and evaluate regression and forecasting models.
  • Train, tune, and evaluate clustering models.
  • Finalize a data science project by presenting models to an audience, putting models into production, and monitoring model performance.

Who Can Benefit

This course is designed for business professionals who leverage data to address business issues. The typical student in this course will have several years of experience with computing technology, including some aptitude in computer programming.

However, there is not necessarily a single organizational role that this course targets. A prospective student might be a programmer looking to expand their knowledge of how to guide business decisions by collecting, wrangling, analyzing, and manipulating data through code; or a data analyst with a background

in applied math and statistics who wants to take their skills to the next level; or any number of other data- driven situations.

Ultimately, the target student is someone who wants to learn how to more effectively extract insights from their work and leverage that insight in addressing business issues, thereby bringing greater value to the business.

This course is also designed to assist students in preparing for the CertNexus® Certified Data Science Practitioner (CDSP) (Exam DSP-110) certification.

Prerequisites

data science concepts, including, but not limited to: types of data, data science roles, the overall data science lifecycle, and the benefits and challenges of data science. You can obtain this level of knowledge by taking the CertNexus DSBIZ™ (Exam DSZ-110) course.

You should have also have experience with high-level programming languages like Python. Being comfortable using fundamental Python data science libraries like NumPy and pandas is highly recommended. You can obtain this level of skills and knowledge by taking the Logical Operations course Using Data Science Tools in Python® .

In addition to programming, you should also have experience working with databases, including querying languages like SQL. Several Logical Operations courses can help you attain this experience:

  • Database Design: A Modern Approach
  • SQL Querying: Fundamentals (Second Edition)
  • SQL Querying: Advanced (Second Edition)

Course Details

Course Outline

  • Lesson 1: Addressing Business Issues with Data Science
  • Lesson 2: Extracting, Transforming, and Loading Data
  • Lesson 3: Analyzing Data
  • Lesson 4: Designing a Machine Learning Approach
  • Lesson 5: Developing Classification Models
  • Lesson 6: Developing Regression Models
  • Lesson 7: Developing Clustering Models
  • Lesson 8: Finalizing a Data Science Project